

Overview of APSE Propulsion Team/Task

> Team: All NASA GRC (2FTE's)

George Kopasakis
Joseph Connolly
Nulie Theofilaktos
Jeffrey Chen

> NRAs

- -- Past no NRA's
- -- New NRA Announcement this Spring

> Type of Studies Conducted

-- So far Analytical Studies (TRL 1-3)

Project Challenges

- The Supersonics Project aims to conduct fundamental research necessary to develop the technologies for supersonic transports
- As such the project identified several technical challenges
 - -- Among these challenges are also
 - ➤ Performance challenges, AeroServoElasticity (ASE) & Aero-Propulso-Servo-Elasticity (APSE) analysis and design
 - >Efficiency challenges, including supersonic cruise efficiency

Objective

NASA

AeroPropulsoServoElasticity (APSE)

Integrated APSE Model (NASA GRC in collaboration with NASA LaRC)

National Aeronautics and Space Administration Approach - Propulsion Modeling

Engine

- Based on component gas lump volume dynamics and performance characteristics & separately stage-by-stage - reported in 2009 WorkShop (2009 WS)
 - -- Developed Nonlinear and linear propulsion system models turbo jet (J85-13 engine) and turbofan – 2009 WS
 - -- Developed 1st version of N+3 variable cycle engine model

$$\frac{\partial}{\partial t} (\rho_s A) + \frac{\partial}{\partial x} (\rho_s A v) = 0$$

$$\frac{\partial}{\partial t} (\rho_s A v) + \frac{\partial}{\partial x} (\rho_s A v^2) = -Ag \frac{\partial P_s}{\partial x} \xrightarrow{\text{opp}} \frac{\partial}{\partial x} \left(\rho_s A u_t \right) + \frac{\partial}{\partial x} (\rho_s A v H) = 0$$

- Derived methodology for developing control schedules (J85-13)
 - -- For compressor operating line (2009 WS), and for exit nozzle area

Approach- Propulsion Modeling

Inlets & Nozzles

- Initially developed linear mixed compression inlet models utilizing LAPIN (legacy Fortran code) – 2009 WS
- <u>Inlets</u> Quasi 1-Dimensional (1D) Computational Fluid Dynamics (CFD) and Compressible flow w/ variable geometries

Axisymmetric External Compression inlet

Mixed Compression Inlet Diagram

Nozzles – CFD based on MacCormack method

Approach- Propulsion Controls

Feedback Controls Design - 2009 WS

- Based on feedback controls loop shaping design developed in this task
 - -- Relates hardware performance to design requirements
 - -- Maximizes control system performance

- Methodology used to design engine fuel actuation controls of linear and nonlinear propulsion system
- Also to design shock position controls for a supersonic inlet

- 7

Approach Propulsion Disturbance

Atmospheric Turbulence – 2009 WS

- Developed atmospheric turbulence models (wind gust, temp, pres)
 - -- More accurate than existing models by ~ 7dB/decade
 - -- Modeling fractional order nature of atmospheric turbulence

 Also need to develop disturbance models for AeroServoElastic, Pitch, Yaw and Roll

Approach Propulsion Modeling for Distortion And Boundary Layer Separation

Distortion

- By developing parallel flow path component models
 - -- Started with compressor utilizing stage-by-stage, 2D Euler in cylindrical coordinates —
 - -- In the future extend to model fans and inlets

Parallel Flow Path Compressor Model

Boundary Layer

 May model by including effective area in the dynamics, else it would require more than 1D

Variable Cycle Propulsion System Studies

- Dual Spool variable cycle High bypass at low altitudes to low bypass high altitudes
- Noise abatement for overland flight
 - -- Through external bypass & through nozzle design
- Modeling approach same as with J85-13 approach except this engine has additional components and flow paths

Publications

- 1. Kopasakis Feedback Control Systems Loop Shaping Approach with Practical Considerations, NASA/TM-2007-215007
- 2. Kopasakis et al. Volume Dynamics Propulsion System Modeling for Supersonic Vehicles, GT2008-50524, NASA/TM-2008-215172
- 3. Connolly et al. Turbofan Volume Dynamics Model for Investigation of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport, AIAA-2009-4802
- 4. Kopasakis et al. Shock Positioning Controls Design for a Supersonic Inlet, AIAA-2009-5117
- 5. Kopasakis et al. Volume Dynamics Propulsion System Modeling for Supersonic Vehicles, *Journal of Turbomachinery* (Vol. 132, October 2010)
- 6. Kopasakis Atmospheric Turbulence Modeling for Aero Vehicles- Fractional Order Fits, NASA/TM-2010-216961
- 7. Kopasakis Modeling of Atmospheric Turbulence as Disturbance for Control Design and Evaluation of High Speed Propulsion, GT2010-22851
- 8. Connolly et al. Loop Shaping Control Design for a Supersonic Propulsion System Model Using QFT Specifications and Bounds" AIAA-2010-7068
- 9. Connolly et al. Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research, AIAA 2011-5635.
- 10. Kopasakis Modeling of Atmospheric Turbulence as Disturbance for Control Design and Evaluation of High Speed Propulsion, *Journal of Dynamic Systems* (vol. 134, issue 2, 2012).
- 11. Kopasakis et al. Quasi 1D Modeling of Mixed Compression Supersonic Inlets, AIAA 2012-0775.
- 12. Kopasakis et al. Quasi One-Dimensional Unsteady Modeling of External Compression Supersonic Inlets, AIAA, JPC, 2012 (pending).